

REPORT TO CONGRESS

UNITED STATES WEATHER RESEARCH PROGRAM ANNUAL PROJECT REPORT

Developed pursuant to: Title I, Section 109 of the Weather Research and Forecasting Innovation Act of 2017, codified at 15 U.S.C. § 8520 Craig McLean, Assistant Administrator Office of Oceanic and Atmospheric Research National Oceanic and Atmospheric Administration

Louis Uccellini, Ph.D., Assistant Administrator for Weather Services and Director of the National Weather Service National Oceanic and Atmospheric Administration

Neil A. Jacobs, Ph.D.,

Assistant Secretary of Commerce for Environmental Observation and Prediction, Performing the Duties of Under Secretary of Commerce for Oceans and Atmosphere

TITLE I, SECTION 109 OF THE WEATHER RESEARCH AND FORECASTING INNOVATION ACT OF 2017, at 15 U.S.C. § 8520(a)(5), INCLUDED THE FOLLOWING LANGUAGE:

(5) Submit to the Committee on Commerce, Science, and Transportation of the Senate and the Committee on Science, Space, and Technology of the House of Representatives, not less frequently than once each year, a report, including —

- (A) a list of ongoing research projects;
- (B) project goals and a point of contact for each project;
- (C) the five projects related to weather observations, short-term weather, or subseasonal forecasts within Office of Oceanic and Atmospheric Research that are closest to operationalization;
- (D) for each project referred to in subparagraph (C) -
 - (i) the potential benefit;
 - (ii) any barrier to operationalization; and
 - *(iii) the plan for operationalization, including which line office will financially support the project and how much the line office intends to spend;*

THIS REPORT RESPONDS TO THE CONGRESSIONAL REQUIREMENT.

TABLE OF CONTENTS

I.	Introduction	5
II.	USWRP Overview	5
III.	Current USWRP Activities	6
IV.	USWRP Projects Closest to Operationalization	7
	A. Project 1: A Probabilistic Tropical Cyclone Genesis Forecast Tool Utilizing an Ensemble of Global Models	7
	B. Project 2: Information Extraction and Verification of Convection-Allowing Models for Severe Hail Forecasting	7
	C. Project 3: Demonstration of Advanced Ensemble Prediction Services for NWS Hydrometeorological Forecast Operations	8
	 D. Project 4: Post-Processing of the Community Multiscale Air Quality Modeling System Air Quality Predictions: Research to Operations 	
	E. Project 5: Refinement and Evaluation of Automated High-Resolution Ensemble-Based Hazard Detection Guidance Tools for Transition to NWS Operations	8
V.	Summary	9
	List of Acronyms	10
Appendix A: List of Currently Funded USWRP Projects (as of January 2018)		

I. Introduction

This report is in response to Section 109 of the Weather Research and Forecasting Innovation Act of 2017 (15 U.S.C. § 8501 note, hereafter referred to as the "Weather Act"), signed into law on April 18, 2017. Section 109 of the Weather Act amends Section 108 of the National Oceanic and Atmospheric Administration (NOAA) Authorization Act of 1992 (15 U.S.C. § 313 note), which authorizes the United States Weather Research Program (USWRP). Section 109 of the Weather Act includes the following language (which references USWRP research projects):

- (5) submit to the Committee on Commerce, Science, and Transportation of the Senate and the Committee on Science, Space, and Technology of the House of Representatives, not less frequently than once each year, a report, including —
 - (A) a list of ongoing research projects;
 - (B) project goals and a point of contact for each project;
 - (C) the five projects related to weather observations, short-term weather, or subseasonal forecasts within Office of Oceanic and Atmospheric Research that are closest to operationalization;
 - (D) for each project referred to in subparagraph (C) -
 - (i) the potential benefit;
 - (ii) any barrier to operationalization; and
 - *(iii) the plan for operationalization, including which line office will financially support the project and how much the line office intends to spend;*

II. USWRP Overview

USWRP began in the 1990s, with a principal motivation to accelerate the rate of forecast improvements by taking advantage of science results and technology advancements, which satisfy an increased need for improved weather information in weather sensitive economic sectors. The program has continued to emphasize the transition of research in five critical areas to produce advances in observational, computing, and modeling capabilities to support substantial improvement in weather forecasting and prediction of high-impact weather events: heavy precipitation and associated flooding; tropical storms; air quality; severe weather; and the social science necessary to improve the communication of weather information to decision-makers.

USWRP funds projects that test and demonstrate new cutting-edge science and technology, which the National Weather Service (NWS) can use operationally to improve NOAA's weather and hydrologic forecasting services for the public. The goal of these projects is to apply new innovative forecasting techniques, models, and products in a quasi-operational environment where NWS forecasters are able to learn and use the products during simulated

forecasting and warning exercises. Most of the USWRP-supported transition activities¹ have been associated with three NOAA testbeds: the Hydrometeorology Testbed,² located at the NWS Weather Prediction Center in College Park, Maryland; the Joint Hurricane Testbed,³ located at the NWS National Hurricane Center (NHC) in Miami, Florida; and the Hazardous Weather Testbed,⁴ located at the National Weather Center in Norman, Oklahoma.

USWRP also funds projects at universities, NOAA Cooperative Institutes, and private companies that seek to improve NWS weather and air quality forecasting services. NWS provides forecasting guidance to Federal and state governments that are responsible for public air quality alerts. These products include ozone, smoke, and particulate matter products updated on a daily basis that impact human health.

III. Current USWRP Activities

Current USWRP-supported research that transitions to NWS will provide forecasters with improved tools and guidance that will help produce more accurate forecasts and warnings. As of January 1, 2018, there are 54 active projects currently funded by USWRP that are managed by the Office of Oceanic and Atmospheric Research (OAR), with continued significant involvement by NWS (Appendix A). As such, the point of contact for these projects is the Assistant Administrator of OAR.

Currently funded testbed projects are analyzing new weather and hydrologic models and statistical analysis and forecast techniques, such as convection-allowing models (i.e., models that can replicate complex processes within thunderstorms) and ensemble forecast techniques that can provide more probabilistic forecasts (which considers the likelihood, or probability, that an event will occur), in addition to standard deterministic (e.g., binary, yes/no) forecasts. It is expected that these projects will demonstrate new applications that NWS forecasters can use once implemented operationally. This will help to improve the quality and timeliness of forecasts for high-impact weather such as tornadoes, severe thunderstorms, flooding, and hurricanes.

USWRP also is supporting projects on topics including: improvements for ozone and particulate matter model forecasts; improved chemical model initialization data and techniques; improved wildfire smoke forecast models; improved wildfire model initialization; and testing of new ensemble-based air quality forecast models. These projects will advance forecasting science and technology and improve NOAA's forecast services for air quality across the Nation.

¹ "USWRP-supported transition activities" include projects that were previously funded by USWRP and are in transition to operations, as well as testbed projects currently funded by USWRP.

² <u>https://hmt.noaa.gov</u>

³ <u>https://www.nhc.noaa.gov/jht/</u>

⁴ <u>https://hwt.nssl.noaa.gov</u>

IV. USWRP Projects Closest to Operationalization

OAR employs a rigorous process for identifying and monitoring USWRP projects that will be transitioned into operations. This process includes establishing a partnership between the principal investigator and the NWS office that will ultimately transition the research into operations when the project begins. This collaboration is maintained throughout the project to ensure continuous feedback from NWS and an understanding of the requirements and resources necessary for transition. In February 2018, OAR and NWS reviewed the USWRP portfolio and identified the five projects that are closest to operationalization. OAR will support any remaining research associated with these activities, but NWS will support the transition of these projects into operations. The projects listed below will provide forecasters with improved forecast guidance for tropical storms, severe storms, water prediction, air quality, and high-impact weather.

A. Project 1: A Probabilistic Tropical Cyclone Genesis Forecast Tool Utilizing an			
Ensemble of Global Models ⁵			
Potential Benefit:	Will provide the probability of tropical cyclone genesis in the		
	Atlantic and Pacific Ocean basins based on forecasts from five		
	global numerical models, which will improve hurricane forecasts		
	to help prevent loss of life and property.		
Where to be implemented:	NWS NHC – Miami, Florida		
Barriers to Operationalization:	None		
Plan to Operationalize:	NHC will continue to convert the tool computer code and will		
	work with the NWS Office of Dissemination to development a		
	final implementation plan.		
Line Office Financial Support:	OAR		
Cost to Transition:	\$230,000		

B. Project 2: Information Extraction and Verification of Convection-Allowing Models for Severe Hail Forecasting

Models for Severe man Porceasting		
Potential Benefit:	Using CAM applications to identify features associated with	
	severe hail observations, which will provide guidance to improve	
	hail forecasting and public warnings for hail events.	
Where to be implemented:	NWS Storm Prediction Center (SPC) – Norman, Oklahoma	
Barriers to Operationalization:	None	
Plan to Operationalize:	SPC staff will work with the NWS National Centers for	
	Environmental Prediction (NCEP) Environmental Modeling	
	Center (EMC) to incorporate computer code into operational	
	convective-allowing models as part of regular updates to output	
	processing.	
Line Office Financial Support:	N/A	
Cost to Transition:	0^{6}	

⁵ This project is no longer funded by USWRP, but is continuing the transition to operationalization through collaboration between OAR and NWS.

⁶ Minimal cost, since similar operational upgrades were recently completed.

C. Project 3: Demonstration of Advanced Ensemble Prediction Services for NWS		
Hydrometeorological Forecast Operations ⁷		
Potential Benefit:	An enhancement to the National Water Model, using ensemble	
	precipitation data to improve forecasts of severe storm events.	
Where to be implemented:	NWS Office of Water Prediction (OWP) – Tuscaloosa, Alabama	
Barriers to Operationalization: None		
Plan to Operationalize:	OWP will transition the National Water Model Medium Range	
	Ensemble into operations by the end of Quarter 3 of Fiscal Year	
	(FY) 2019	
Line Office Financial Support:	NWS	
Cost to Transition:	\$150,000	

D. Project 4: Post-Processing of the Community Multiscale Air Quality Modeling System Air Ouality Predictions: Research to Operations

System An Quanty Freuctions. Research to Operations		
Potential Benefit:	Improvements to an existing NWS operational model forecast	
	bias-correction algorithm for fine particulate matter and	
	application of the algorithm to numerical model forecasts of	
	ozone, to improve accuracy of NWS air quality forecasts and	
	public health alerts, with additional improvements in smoke,	
	visibility, and cloud/precipitation forecasts.	
Where to be implemented:	NWS NCEP EMC – College Park, Maryland	
Barriers to Operationalization:	None	
Plan to Operationalize:	EMC will incorporate bias correction into the post-processing of	
	output from the NWS operational air quality forecasting system as	
	part of the Quarter 4 FY 2018 routine upgrade.	
Line Office Financial Support:	NWS, OAR	
Cost to Transition:	\$65,000 (NWS), \$215,000 (OAR)	

E. Project 5: Refinement and Evaluation of Automated High-Resolution Ensemble-Based Hazard Detection Guidance Tools for Transition to NWS Operations

Dascu mazaru Detection Guidance roois for rransition to roop operations		
Potential Benefit:	Create and provide improved ensemble-based hazard prediction	
	tools for heavy rain and snowfall to aid NWS forecasters in their	
	decision making and communication of forecast uncertainty to	
	partners and the public.	
Where to be implemented:	NWS NCEP Central Operations - College Park, Maryland	
Barriers to Operationalization:	None	
Plan to Operationalize:	EMC to implement calibrated probabilistic forecast product	
	generation from the current, operational, high-resolution NCEP	
	ensemble.	
Line Office Financial Support:	OAR	
Cost to Transition:	\$30,000	

⁷ This project is not currently funded by USWRP, but is continuing the transition to operationalization through collaboration between OAR and NWS.

V. Summary

USWRP provides important support for research focused on improving tools and guidance for forecasting high-impact events. USWRP projects include a strong partnership between researchers and forecasters that focuses on transitioning research results into NWS operations. In FY 2018, USWRP supported 54 projects that included ongoing involvement of NWS in research, transition, and management activities. Five USWRP projects that are closest to becoming operational will provide NWS forecasters with improved guidance for forecasting tropical storms, hail-producing storms, flooding potential, ozone and particulate matter, and the probability of high-impact hazardous weather.

List of Acronyms

EMC	Environmental Modeling Center
NCEP	National Centers for Environmental Prediction
NHC	National Hurricane Center
NOAA	National Oceanic and Atmospheric Administration
NWS	National Weather Service
OAR	Oceanic and Atmospheric Research
OWP	Office of Water Prediction
SPC	Storm Prediction Center
USWRP	United States Weather Research Program

THIS PAGE INTENTIONALLY LEFT BLANK

Project Title	Lead Organization	Project Goal
Demonstration of a Rapid Update Convection-Permitting Ensemble Forecast System to Improve Flash Flood and Winter Weather Prediction	National Center for Atmospheric Research	The objective is to design and test an improved National Center for Atmospheric Research convection- permitting ensemble forecast model system using new techniques that will produce high-resolution probabilistic forecasts of precipitation for real-time evaluation during the Hydrometeorology Testbed experiments.
Convection-Allowing Ensemble Prediction for Heavy Precipitation in Support of the Hydrometeorology Testbed: New Quantitative Precipitation Forecast Products, Data Assimilation Techniques and Prediction Model	University of Oklahoma	The objective is to design and test an improved University of Oklahoma convection-permitting ensemble forecast model system using new radar data assimilation techniques that will produce high-resolution probabilistic forecasts of precipitation for real-time evaluation during the Hydrometeorology Testbed experiments.
Enabling Effective Use of Deterministic-to-Probabilistic Precipitation Forecasts for Heavy and Extreme Events	National Center for Atmospheric Research	The objective is to develop and test tools to measure the accuracy and forecaster utilization of precipitation output products from deterministic and probabilistic convection-allowing forecast models to improve forecaster utilization of these new products
Improving Lake-Effect Snow and Ice Forecasting for the Great Lakes Region	NOAA OAR Great Lakes Environmental Research Laboratory	The objective is to develop and test an improved coupled lake hydrodynamic- ice forecast model and output products, through real-time evaluation by NWS forecasters, to improve lake-ice and lake-effect snowfall/ice forecasts in the Great Lakes region.
Assessment of Hydrologic Forecasts Generated Using Multi-Model and Multi- Precipitation Product Forcing	University of Iowa	The objective is to assess uncertainty and sensitivity of ensemble hydrologic models and probabilistic hydrologic forecasts using variously configured distributed hydrologic forecast models, including the National Water Model, and precipitation forcings in the study area of Iowa.
Comparison of Model versus Observationally-Driven Water Vapor Profiles for Forecasting Heavy Precipitation Events	Colorado State University – Cooperative Institute for Research in the Atmosphere	The objective is to assess the value of satellite-based layered moisture products relative to NWS forecast model representations of layered

Appendix A: List of Active USWRP Projects (as of January 2018)

		moisture as a model diagnostic tool for understanding and improving NWS
		precipitation forecasts
Probabilistic Warn-on-Forecast	University of Oklahoma	The objective is to develop and evaluate
System for Heavy Rainfall and	- Cooperative Institute	a new short-term probabilistic
Flash Flooding	for Mesoscale	hydrologic forecast model, based on the
Thush Troouning	Meteorological Studies	deterministic Flooded Locations And
		Simulated Hydrographs model, to
		improve flash flood forecasting using
		NWS forecaster feedback during the
		Hydrometeorology Testbed
		experiments.
Quantifying Observational	University of California,	The objective is to implement the NWS
Requirements for WRF-Hydro	San Diego – Scripps	operational hydrologic model in
Forcing in the West Using	Institution of	California in a test-mode to evaluate
Russian River	Oceanography –	and test the value of high resolution
Hydrometeorological Testbed	Cooperative Institute for	observations of soil moisture and other
Experience and Data to Inform	Marine Ecosystems and	input observation datasets to improving
National Water Center Tools	Climate	hydrologic model forecasts.
Demonstration of a Rapid	National Center for	The objective is to design and test an
Update Convection-Permitting	Atmospheric Research	improved convection-permitting
Ensemble Forecast System to	1	ensemble forecast model system using
Improve Hazardous Weather		new techniques that will produce high
Prediction		resolution probabilistic forecasts of
		severe thunderstorms and tornadoes for
		evaluation during the Hazardous
		Weather Testbed experiments.
Integration of Multi-Radar	University of Oklahoma	The objective is to improve an existing
Multi-Sensor Azimuthal Shear	- Cooperative Institute	high-resolution probability of tornado
into a contiguous United States	for Mesoscale	product over the United States using
Conditional Probability of	Meteorological Studies	radar wind shear data to improve the
Tornado Intensity Product in the	8	information NWS forecasters use for
Hazardous Weather Testbed		tornado warnings.
Improving NWS Convection	University of Oklahoma	The objective is to design and evaluate
Allowing Hazardous Weather		improved initial condition specification
Ensemble Forecasts through		methods for convective-scale ensemble
Optimizing Multi-Scale Initial		forecast models and produce real-time
Condition Perturbations		model forecasts for evaluation during
		the Hazardous Weather Testbed
		experiments.
Evaluating stochastic physics	National Center for	The objective is to evaluate stochastic
approaches within select	Atmospheric Research	physics perturbation methods to create
Convection Allowing Model	1	multiple ensemble members for
members included in the		convection-allowing forecast models
Community Leveraged Unified		and to evaluate their performance
Ensemble during the Hazardous		during the Hazardous Weather Testbed
Weather Testbed Spring		experiments.
Experiment		*
r		

Developing an objective	National Center for	The objective is to engage the
evaluation scorecard for storm	Atmospheric Research	forecasting and research communities
scale prediction		to identify and test innovative new
		metrics to measure the performance of
		convection-allowing forecast models.
Development and Optimization	University of Oklahoma	The objective is to develop advanced
of Radar-Assimilating	Chiversity of Chianonia	radar data assimilation techniques for
Ensemble-Based Data		convection-allowing ensemble forecast
Assimilation for Storm-Scale		models, including NOAA's new Finite-
Ensemble Prediction in Support		Volume Cube-Sphere Dynamical Core
of Hazardous Weather Testbed		Model, and to generate output forecast
Spring Experiments		products for evaluation during the
		Hazardous Weather Testbed
		experiments.
Improving the design and utility	University of Oklahoma	The objective is to develop, test, and
to severe weather forecasters of		deliver new convection-allowing
convection permitting ensembles		ensemble forecast model verification
through application of a		techniques and tools based on object-
probabilistic object-based, post-		based methods using operational NWS
processing, and verification		forecaster feedback during the
technique		Hazardous Weather Testbed
1		experiments.
Improvements and extensions to	Florida State University	The objective is to improve an existing
an existing probabilistic genesis	5	real-time dynamic/statistical forecast
forecast tool using an ensemble		tool based on global weather models
of global models		that provides NWS forecasters with
5		probabilistic guidance on the genesis of
		new tropical cyclones in the Atlantic
		and eastern Pacific Oceans.
Improvements to Operational	Colorado State	The objective is to improve on existing
Statistical Tropical Cyclone	University – Cooperative	real-time operational tropical cyclone
Intensity Forecast Models using	Institute for Research in	intensity forecast models based on
Wind Structure and Eye	the Atmosphere	statistical-dynamic techniques and to
Predictors	-	evaluate them in coordination with
		NWS hurricane forecasters through the
		Joint Hurricane Testbed.
Evolutionary Programming for	University of Wisconsin	The objective is to improve on
Probabilistic Tropical Cyclone	– Milwaukee	operational tropical cyclone intensity
Intensity Forecasts		forecasts using a new modeling
-		technique that creates multiple
		ensemble forecast members that will
		produce deterministic and probabilistic
		intensity forecast products for
		forecaster evaluation.
Ensemble-based Pre-genesis	University of Colorado -	The objective is to develop new
Watches and Warnings for	Colorado Springs	location, track, and intensity guidance
Atlantic and North Pacific		products for NWS forecasters using
		United States and European ensemble
		weather forecast models to aid in

		forecasting genesis of tropical cyclones
		in the Atlantic and Pacific Oceans.
Transition of Machine-Learning	Minginging State	The objective is to develop and test
e	Mississippi State	
Based Rapid Intensification	University – Northern	artificial intelligence approaches to
Forecasts to Operations	Gulf Institute	forecasting rapid intensification of
		tropical cyclones in coordination with
		forecasters at the Joint Hurricane
		Testbed.
Estimation of Tropical Cyclone	Florida International	The objective is to improve and test an
Intensity Using Satellite Passive	University	algorithm to estimate current tropical
Microwave Observations		cyclone intensity using microwave
		satellite observations.
Airborne Phased Array Radar	National Center for	The objective is to do preliminary
Development and Risk	Atmospheric Research	engineering design and requirements
Mitigation Project		studies and testing to reduce risks of
		developing the first aircraft-based C-
		band dual-Doppler polarimetric-phased
		array radar to make high-resolution
		measurement of storm systems.
Evaluation and Improvements of	General Atomics, Inc.	The objective is to collect and compare
Tornado Detection using		infrasound data and other
Infrasound Remote Sensing:		meteorological radar data in northern
Comparative Analysis of		Alabama to evaluate the ability of
Infrasound, Radar, Profiler, and		infrasound measurements to identify
Meteorological Data Sets, and		tornadoes detected by established
Potential Impacts on		Doppler radar methods.
NOAA/NWS Operations		
Infrasound Detection of	University of Mississippi	The objective is to collect infrasound
Tornadoes		data in northern Alabama to evaluate
		the ability of infrasound measurements
		to identify and track tornadoes.
Augmentation of the	University of Mississippi	The objective is to collect infrasound
Verifications of the Origins of		data in northern Alabama to evaluate
Rotation in Tornadoes		the ability of infrasound measurements
Experiment-Southeast		to identify and track tornadoes.
(VORTEX-SE) Intensive		, i i i i i i i i i i i i i i i i i i i
Observations Period		
Measurements with Infrasound		
Observations to Detect and		
Track Tornadoes		
Direct Detection of Tornadoes	University of Alabama	The objective is to collect and compare
Using Infrasound Remote	Huntsville	infrasound data and other
Sensing: Assessment of		meteorological radar data in northern
Capabilities Through		Alabama to evaluate the ability of
Comparison with Dual		infrasound measurements to identify
Polarization Radar and Other		tornadoes detected by established
Direct Detection Measurements		Doppler radar methods.
Post-Processing of the	University of Colorado –	The objective is to improve and
Community Multiscale Air	Cooperative Institute for	evaluate an existing operational NWS
Quality Modeling System Air		model forecast bias-correction
Quality woodening System All	1	

Quality Predictions: Research to	Research in	algorithm for fine particulate matter and
Operations	Environmental Sciences	to apply this advanced algorithm to
operations	Environmental Sciences	numerical model forecasts of ozone to
		improve accuracy of deterministic and
		probabilistic air quality forecasts.
A Novel Ensemble Design for	National Center for	The objective is to explore and quantify
Particulate Matter (PM _{2.5})	Atmospheric Research	the potential value of ensemble-based
Probabilistic Predictions and		numerical forecast predictions of fine
Quantification of their		particulate matter for possible future
Uncertainty		operational implementation.
Developing a unified online air	NOAA OAR Earth	The objective is to develop and test a
quality forecasting system based	System Research	new "online" coupled operational air
on Community Multiscale Air	Laboratory	quality forecasting system by
Quality Model and Next	5	integrating the NWS operational global
Generation Global Prediction		weather model framework with the
System		Environmental Protection Agency's air
		chemistry transport model to improve
		air quality forecasting.
Towards the Improvement of	Universities Space	The objective is to develop improved
Chemical Lateral Boundary	Research Association –	numerical modeling methods for
Conditions for the National Air	National Aeronautics and	•
		specifying lateral boundary conditions
Quality Forecast Capability	Space Administration	for NWS air quality forecasting models.
	Goddard Space Flight	
	Center	
Top-down Estimation of	University of Maryland	The objective is to improve on current
Wildfire Smoke Emission Based	- Cooperative Institute	NWS smoke forecasts from deficient
on the Hybrid Single Particle	for Climate Science	BlueSky estimates by advanced
Lagrangian Integrated Trajectory		modeling of wildfire smoke emission
Model and NOAA National		source strengths, locations, and timing
Environmental Satellite, Data,		using NOAA satellite observations.
and Information Service		
Geostationary Operational		
Environmental Satellite		
Aerosol/Smoke Products to		
Improve Smoke Forecasts in the		
United States		
Improving Spatial Resolution of	Sonoma Technology, Inc.	The objective is to improve on current
Wildland Fire Location and Fuel		NWS smoke forecasts by using high
Biomass Data Inputs to NOAA's		resolution NOAA satellite observations
National Air Quality Forecast		of wildfire locations and make better
Capability		estimates of fuel sources and types that
Cupatinty		affect wildfire smoke emissions.
Multi-Radar/Multi-Sensor	University of Oklahoma	The objective is to investigate the
	-	÷ •
Hydrometeorological Testbed-	- Cooperative Institute	impact of merged radar and rain gauge
Hydro Experiment	for Mesoscale	rainfall estimates on the quality of
	Meteorological Studies	streamflow products from a distributed
		hydrologic forecast model to improve
		flash flood forecasting.
Validation and Improvement of	University of Colorado –	The objective is to evaluate and test
Microphysical Parameterizations	Cooperative Institute for	multiple cloud and precipitation

for Potton Orographic	Research in	migraphysical parameterization
for Better Orographic		microphysical parameterization
Precipitation Forecasts	Environmental Sciences	schemes of numerical weather forecast
		models to improve forecasting of
		precipitation in the mountainous
		Western United States through
		comparison with observations.
Improving Initial Conditions and	University of Oklahoma	The objective is to develop and test
their Perturbations through		through the Hazardous Weather
Ensemble-Based Data		Testbed new data assimilation
Assimilation for Optimized		techniques for high-resolution
Storm-Scale Ensemble		convection-allowing forecast models
Prediction in Support of		that make use of all operational data
Hazardous Weather Testbed		sets and full-volume radar data.
		sets and fun-volume fadar data.
Severe Weather Forecasting		
Integration and Evaluation of	University of Oklahoma	The objective is to integrate a new
ProbSevere within the	- Cooperative Institute	ProbSevere model into the Probabilistic
Probabilistic Hazard Information	for Mesoscale	Hazard Information tool to improve
tool in the Hazardous Weather	Meteorological Studies	local warnings for tornadoes, hail, and
Testbed		severe weather and to test it within the
		Hazardous Weather Testbed with NWS
		forecaster feedback.
Convection-permitting Ensemble	National Center for	The objective is to develop and test
Forecast System for Prediction	Atmospheric Research	convection-permitting ensemble
of Extreme Weather	F	forecasts and models of extreme short-
		term weather events and provide the
		output forecast products to the
		Hazardous Weather Testbed for
		evaluation by NWS forecasters.
Information Extraction and	University of Oklahoma	The objective is to study convection-
Verification of Convection-	- Cooperative Institute	allowing models to find features that
Allowing Models for Severe Hail	for Mesoscale	are correlated with severe hail
Forecasting	Meteorological Studies	observations, to verify these
		relationships, and to provide this
		probabilistic-based guidance to
		forecasters to improve hail forecasting.
Developing and Evaluating a	University of Oklahoma	The objective is to further develop the
Gridpoint Statistical		direct assimilation of radar observations
Interpolation-based ensemble		into forecast models. This work will
Kalman filter-Variational Hybrid		further extend the capability of the
Data Assimilation for NCEP		existing NWS data assimilation system
North American Regional		and conduct extensive testing and
		e e
Reanalysis to Improve		evaluating of the system in the NWS's
Convection-Allowing Hazardous		modeling framework.
Weather Forecast	TT ' ', ATT' '	
Probabilistic Prediction of	University of Wisconsin	The objective is to improve the
Tropical Cyclone Rapid	- Cooperative Institute	accuracy of probabilistic tropical
Intensification Using Satellite	for Meteorological	cyclone rapid intensification forecasting
Passive Microwave	Satellite Studies	using multiple forecast models with
		microwave satellite imagery and testing

Improvements to Operational Statistical Tropical Cyclone Intensity Forecast ModelsImproved eyewall replacement cycle forecasting using a microwave-based algorithm	Colorado State University – Cooperative Institute for Research in the Atmosphere University of Wisconsin – Cooperative Institute for Meteorological	it during two hurricane seasons in the Atlantic and Pacific Oceans. The objective is to improve two of the standard tropical cyclone forecast models and the Rapid Intensification Index tool to improve the operational products used by hurricane forecasters in the Atlantic and Pacific Oceans. The objective is to develop an improved forecast model to detect and provide forecaster guidance on hurricane
Improvement and Implementation of the Probability-based Microwave Ring Rapid Intensification Index for NHC/Joint Typhoon Warning Center Forecast Basins	Satellite Studies Florida International University	eyewall replacement using microwave satellite imagery. The objective is to develop an improved probability-based microwave rapid intensification index that can be used by forecasters as guidance in forecasting rapid intensification of tropical cyclones.
Guidance on observational undersampling over the tropical cyclone lifecycle	University of Miami	The objective is to study underestimates of hurricane intensity measured by various in-situ and remote sensing instruments to provide guidance to forecasters on interpreting this data when developing forecasts of tropical cyclone intensity.
Improvement of the Tropical Cyclone Genesis Index	University of Miami – Cooperative Institute for Marine and Atmospheric Studies	The objective is to make improvements to a probabilistic statistical forecasting tool to aid forecasters in predicting tropical cyclone genesis and intensification and to extend its use to the Pacific Ocean.
Transition of the Coastal and Estuarine Storm Tide Model to an Operational Model for Forecasting Storm Surges	Florida International University	The objective is to develop and test a new hurricane storm surge forecast model to better predict storm surge flooding in coastal areas compared to the existing NWS model.
Probability of What? Understanding and Conveying Uncertainty through Probabilistic Hazard Services	NOAA OAR National Severe Storms Laboratory	This project will build an end-to-end capability for the NWS to deliver high frequency, probabilistic weather information to decision makers.
Refinement and Evaluation of Automated High-Resolution Ensemble-Based Hazard Detection Guidance Tools for Transition to NWS Operations	NOAA OAR Earth Systems Research Laboratory	This work will lead to the creation of NWS forecaster tools that will facilitate the rapid integration of available computer model guidance to enable probabilistic forecast services.

Collaborative Research: Online Hazard Communication in the Terse Regime	University of Kentucky	This project is developing an algorithm that allows for an examination of NWS office use of terse, Twitter messages across the weather communication continuum to identify message strategies that enhance engagement during threat and non-threat periods.
Improving Public Response to Weather Warnings	University of Washington	This project explores public and emergency manager perceptions of changing weather forecasts and warnings. Specifically, this study measures the effect of a consistent versus inconsistent forecast on public trust; explores what role probabilities play in this process; and how forecaster framing of uncertainty vs confidence during decision-support changes forecast understanding.
Next Generation, Resilient Warning Systems for Tornadoes and Flash Floods	University of Massachusetts Amherst	This project is developing a methodological approach and strategy for capturing understanding of human behavior and response to severe weather and warnings.
Development of a Digital Collaboration Environment for the Alliance for Integrative Approaches to Extreme Environmental Events, Phase I: Scoping and Functional Requirements Development	University of Oklahoma – Cooperative Institute for Mesoscale Meteorological Studies	This project will create an online portal for digital collaboration that brings together diverse academic disciplines, organizations, and sectors across the weather enterprise.
An Examination of the State of Knowledge on Risk Perceptions and Understanding Response to Uncertainty Information	Howard University	This project will conduct a systematic literature review on public understanding and response to uncertainty providing NOAA with a baseline understanding and identification of research gaps.
OAR Hurricane Moving Nest	NOAA OAR Atlantic Oceanic and Meteorological Laboratory	This project seeks to improve the hurricane intensity and structure forecasting capabilities of NOAA model cores.